1,431 research outputs found

    Effect of variations in atelectasis on tumor displacement during radiation therapy for locally advanced lung cancer

    Get PDF
    Purpose Atelectasis (AT), or collapsed lung, is frequently associated with central lung tumors. We investigated the variation of atelectasis volumes during radiation therapy and analyzed the effect of AT volume changes on the reproducibility of the primary tumor (PT) position. Methods and materials Twelve patients with lung cancer who had AT and 10 patients without AT underwent repeated 4-dimensional fan beam computed tomography (CT) scans during radiation therapy per protocols that were approved by the institutional review board. Interfraction volume changes of AT and PT were correlated with PT displacements relative to bony anatomy using both a bounding box (BB) method and change in center of mass (COM). Linear regression modeling was used to determine whether PT and AT volume changes were independently associated with PT displacement. PT displacement was compared between patients with and without AT. Results The mean initial AT volume on the planning CT was 189 cm3 (37-513 cm3), and the mean PT volume was 93 cm3 (12-176 cm3). During radiation therapy, AT and PT volumes decreased on average 136.7 cm3 (20-369 cm3) for AT and 40 cm3 (−7 to 131 cm3) for PT. Eighty-three percent of patients with AT had at least one unidirectional PT shift that was greater than 0.5 cm outside of the initial BB during treatment. In patients with AT, the maximum PT COM shift was ≥0.5 cm in all patients and \u3e1 cm in 58% of patients (0.5-2.4 cm). Changes in PT and AT volumes were independently associated with PT displacement (P \u3c .01), and the correlation was smaller with COM (R2 = 0.58) compared with the BB method (R2 = 0.80). The median root mean squared PT displacement with the BB method was significantly less for patients without AT (0.45 cm) compared with those with AT (0.8cm, P = .002). Conclusions Changes in AT and PT volumes during radiation treatment were significantly associated with PT displacements that often exceeded standard setup margins. Repeated 3-dimensional imaging is recommended in patients with AT to evaluate for PT displacements during treatment. Summary This study analyzed 12 patients with atelectasis and 10 patients without atelectasis who underwent repeat 4-dimensional fan beam computed tomography during radiation therapy. Patients with atelectasis had significantly greater tumor displacements than patients without atelectasis, and these tumor displacements often exceeded standard setup margins. Patients with atelectasis may benefit from repeated 3-dimensional imaging during radiation therapy and possible replanning for large tumor displacements

    Effect of variations in atelectasis on tumor displacement during radiation therapy for locally advanced lung cancer

    Get PDF
    Purpose Atelectasis (AT), or collapsed lung, is frequently associated with central lung tumors. We investigated the variation of atelectasis volumes during radiation therapy and analyzed the effect of AT volume changes on the reproducibility of the primary tumor (PT) position. Methods and materials Twelve patients with lung cancer who had AT and 10 patients without AT underwent repeated 4-dimensional fan beam computed tomography (CT) scans during radiation therapy per protocols that were approved by the institutional review board. Interfraction volume changes of AT and PT were correlated with PT displacements relative to bony anatomy using both a bounding box (BB) method and change in center of mass (COM). Linear regression modeling was used to determine whether PT and AT volume changes were independently associated with PT displacement. PT displacement was compared between patients with and without AT. Results The mean initial AT volume on the planning CT was 189 cm3 (37-513 cm3), and the mean PT volume was 93 cm3 (12-176 cm3). During radiation therapy, AT and PT volumes decreased on average 136.7 cm3 (20-369 cm3) for AT and 40 cm3 (−7 to 131 cm3) for PT. Eighty-three percent of patients with AT had at least one unidirectional PT shift that was greater than 0.5 cm outside of the initial BB during treatment. In patients with AT, the maximum PT COM shift was ≥0.5 cm in all patients and \u3e1 cm in 58% of patients (0.5-2.4 cm). Changes in PT and AT volumes were independently associated with PT displacement (P \u3c .01), and the correlation was smaller with COM (R2 = 0.58) compared with the BB method (R2 = 0.80). The median root mean squared PT displacement with the BB method was significantly less for patients without AT (0.45 cm) compared with those with AT (0.8cm, P = .002). Conclusions Changes in AT and PT volumes during radiation treatment were significantly associated with PT displacements that often exceeded standard setup margins. Repeated 3-dimensional imaging is recommended in patients with AT to evaluate for PT displacements during treatment. Summary This study analyzed 12 patients with atelectasis and 10 patients without atelectasis who underwent repeat 4-dimensional fan beam computed tomography during radiation therapy. Patients with atelectasis had significantly greater tumor displacements than patients without atelectasis, and these tumor displacements often exceeded standard setup margins. Patients with atelectasis may benefit from repeated 3-dimensional imaging during radiation therapy and possible replanning for large tumor displacements

    Respiratory motion variability of primary tumors and lymph nodes during radiotherapy of locally advanced non-small-cell lung cancers

    Get PDF
    Background and purpose The need for target adjustment due to respiratory motion variation and the value of carina as a motion surrogate is evaluated for locally advanced non-small-cell lung cancer. Material and methods Using weekly 4D CTs (with audio-visual biofeedback) of 12 patients, respiratory motion variation of primary tumors (PT), lymph nodes (LN) and carina (C) were determined. Results Mean (SD) 3D respiratory motion ranges of PT, LN and C were 4 (3), 5 (3) and 5 (3) mm. PT and LN (p = 0.003), and LN and C motion range were correlated (p = 0.03). Only 20 %/5 % of all scans had variations \u3e3 mm/5 mm. Large respiratory motion range on the initial scan was associated with larger during-treatment variations for PT (p = 0.03) and LN (p = 0.001). Mean (SD) 3D relative displacements of PT-C, LN-C and PT-LN were each 6 (2) mm. Variations of displacements \u3e3 mm/5 mm were observed in 28 %/6 % of scans for PT-LN, 20 %/9 % for PT-C, and 20 %/8 % for LN-C. Conclusions Motion reassessment is recommended in patients with large initial motion range. Relative motion-related displacements between PT and LN were larger than PT and LN motion alone. Both PT and C appear to be comparable surrogates for LN respiratory motion

    Interobserver Reliability in Describing Radiographic Lung Changes After Stereotactic Body Radiation Therapy

    Get PDF
    Purpose Radiographic lung changes after stereotactic body radiation therapy (SBRT) vary widely between patients. Standardized descriptions of acute (≤6 months after treatment) and late (\u3e6 months after treatment) benign lung changes have been proposed but the reliable application of these classification systems has not been demonstrated. Herein, we examine the interobserver reliability of classifying acute and late lung changes after SBRT. Methods and materials A total of 280 follow-up computed tomography scans at 3, 6, and 12 months post-treatment were analyzed in 100 patients undergoing thoracic SBRT. Standardized descriptions of acute lung changes (3- and 6-month scans) include diffuse consolidation, patchy consolidation and ground glass opacity (GGO), diffuse GGO, patchy GGO, and no change. Late lung change classifications (12-month scans) include modified conventional pattern, mass-like pattern, scar-like pattern, and no change. Five physicians scored the images independently in a blinded fashion. Fleiss\u27 kappa scores quantified the interobserver agreement. Results The Kappa scores were 0.30 at 3 months, 0.20 at 6 months, and 0.25 at 12 months. The proportion of patients in each category at 3 and 6 months was as follows: Diffuse consolidation 11% and 21%; patchy consolidation and GGO 15% and 28%; diffuse GGO 10% and 11%; patchy GGO 15% and 15%; and no change 49% and 25%, respectively. The percentage of patients in each category at 12 months was as follows: Modified conventional 46%; mass-like 16%; scar-like 26%; and no change 12%. Uniform scoring between the observers occurred in 26, 8, and 14 cases at 3, 6, and 12 months, respectively. Conclusions Interobserver reliability scores indicate a fair agreement to classify radiographic lung changes after SBRT. Qualitative descriptions are insufficient to categorize these findings because most patient scans do not fit clearly into a single classification. Categorization at 6 months may be the most difficult because late and acute lung changes can arise at that time

    Simulation-free radiation therapy: An emerging form of treatment planning to expedite plan generation for patients receiving palliative radiation therapy

    Get PDF
    PURPOSE: Herein we report the clinical and dosimetric experience for patients with metastases treated with palliative simulation-free radiation therapy (SFRT) at a single institution. METHODS AND MATERIALS: SFRT was performed at a single institution. Multiple fractionation regimens were used. Diagnostic imaging was used for treatment planning. Patient characteristics as well as planning and treatment time points were collected. A matched cohort of patients with conventional computed tomography simulation radiation therapy (CTRT) was acquired to evaluate for differences in planning and treatment time. SFRT dosimetry was evaluated to determine the fidelity of SFRT. Descriptive statistics were calculated on all variables and statistical significance was evaluated using the Wilcoxon signed rank test and RESULTS: Thirty sessions of SFRT were performed and matched with 30 sessions of CTRT. Seventy percent of SFRT and 63% of CTRT treatments were single fraction. The median time to plan generation was 0.88 days (0.19-1.47) for SFRT and 1.90 days (0.39-5.23) for CTRT ( CONCLUSIONS: Palliative SFRT is an emerging technique that allowed for a statistically significant lower time to plan generation and was dosimetrically acceptable. This benefit must be weighed against increased total treatment time for patients receiving SFRT compared with CTRT, and appropriate patient selection is critical

    Phantom-based quality assurance of a clinical dose accumulation technique used in an online adaptive radiation therapy platform

    Get PDF
    PURPOSE: This study aimed to develop a routine quality assurance method for a dose accumulation technique provided by a radiation therapy platform for online treatment adaptation. METHODS AND MATERIALS: Two commonly used phantoms were selected for the dose accumulation QA: Electron density and anthropomorphic pelvis. On a computed tomography (CT) scan of the electron density phantom, 1 target (gross tumor volume [GTV]; insert at 6 o\u27clock), a subvolume within this target, and 7 organs at risk (OARs; other inserts) were contoured in the treatment planning system (TPS). Two adaptation sessions were performed in which the GTV was recontoured, first at 7 o\u27clock and then at 5 o\u27clock. The accumulated dose was exported from the TPS after delivery. Deformable vector fields were also exported to manually accumulate doses for comparison. For the pelvis phantom, synthetic Gaussian deformations were applied to the planning CT image to simulate organ changes. Two single-fraction adaptive plans were created based on the deformed planning CT and cone beam CT images acquired onboard the radiation therapy platform. A manual dose accumulation was performed after delivery using the exported deformable vector fields for comparison with the system-generated result. RESULTS: All plans were successfully delivered, and the accumulated dose was both manually calculated and derived from the TPS. For the electron density phantom, the average mean dose differences in the GTV, boost volume, and OARs 1 to 7 were 0.0%, -0.2%, 92.0%, 78.4%, 1.8%, 1.9%, 0.0%, 0.0%, and 2.3%, respectively, between the manually summed and platform-accumulated doses. The gamma passing rates for the 3-dimensional dose comparison between the manually generated and TPS-provided dose accumulations were \u3e99% for both phantoms. CONCLUSIONS: This study demonstrated agreement between manually obtained and TPS-generated accumulated doses in terms of both mean structure doses and local 3-dimensional dose distributions. Large disagreements were observed for OAR1 and OAR2 defined on the electron density phantom due to OARs having lower deformation priority over the target in addition to artificially large changes in position induced for these structures fraction-by-fraction. The tests applied in this study to a commercial platform provide a straightforward approach toward the development of routine quality assurance of dose accumulation in online adaptation

    Implementing a novel remote physician treatment coverage practice for adaptive radiation therapy during the coronavirus pandemic

    Get PDF
    Purpose: The 2019 coronavirus disease pandemic has placed an increased importance on physical distancing to minimize the risk of transmission in radiation oncology departments. The pandemic has also increased the use of hypofractionated treatment schedules where magnetic resonance-guided online adaptive radiation therapy (ART) can aid in dose escalation. This specialized technique requires increased staffing in close proximity, and thus the need for novel coverage practices to increase physical distancing while still providing specialty care. Methods and Materials: A remote-physician ART coverage practice was developed and described using commercially available software products. Our remote-physician coverage practice provided control to the physician to contour and review of the images and plans. The time from completion of image registration to the beginning of treatment was recorded for 20 fractions before remote-physician ART coverage and 14 fractions after implementation of remote-physician ART coverage. Visual quality was calculated using cross-correlation between the treatment delivery and remote-physician computer screens. Results: For the 14 fractions after implementation, the average time from image registration to the beginning of treatment was 24.9 ± 6.1 minutes. In comparison, the 20 fractions analyzed without remote coverage had an average time of 29.2 ± 9.8 minutes. The correlation between the console and remote-physician screens was Conclusions: Our novel remote-physician ART coverage practice is secure, interactive, timely, and of high visual quality. When using remote physicians for ART, our department was able to increase physical distancing to lower the risk of virus transmission while providing specialty care to patients in need

    Techno-Economic Feasibility Analysis of a Fully Mobile Radiation Oncology System using Monte Carlo Simulation

    Get PDF
    PURPOSEDisparities in radiation oncology (RO) can be attributed to geographic location, socioeconomic status, race, sex, and other societal factors. One potential solution is to implement a fully mobile (FM) RO system to bring radiotherapy to rural areas and reduce barriers to access. We use Monte Carlo simulation to quantify techno-economic feasibility with uncertainty, using two rural Missouri scenarios.METHODSRecently, a semimobile RO system has been developed by building an o-ring linear accelerator (linac) into a mobile coach that is used for temporary care, months at a time. Transitioning to a more FM-RO system, which changes location within a given day, presents technical challenges including logistics and quality assurance. This simulation includes cancer census in both northern and southeastern Missouri, multiple treatment locations within a given day, and associated expenditures and revenues. A subset of patients with lung, breast, and rectal diseases, treated with five fractions, was simulated in the FM-RO system.RESULTSThe FM-RO can perform all necessary quality assurance tests as suggested in national medical physics guidelines within 1.5 hours, thus demonstrating technological feasibility. In northern and southeastern Missouri, five-fraction simulations\u27 net incomes were, in US dollars (USD), 1.55±0.17million(approximately74patients/year)and1.55 ± 0.17 million (approximately 74 patients/year) and 3.65 USD ± 0.25 million (approximately 98 patients/year), respectively. The number of patients seen had the highest correlation with net income as well as the ability to break-even within the simulation. The model does not account for disruptions in care or other commonly used treatment paradigms, which may lead to differences in estimated economic return. Overall, the mobile system achieved a net benefit, even for the most negative simulation scenarios.CONCLUSIONOur simulations suggest technologic success and economic viability for a FM-RO system within rural Missouri and present an interesting solution to address other geographic disparities in access to radiotherapy
    • …
    corecore